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Overview

• The vacua of de Sitter space

• The linear divergences of an interacting theory in
an αααα-vacuum

• Taming the divergences of the αααα-vacuum

• Truncated αααα-vacua and the CMB (next talk)
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The geometry of de Sitter space

• The cosmological importance
of de Sitter space challenges
us to understand properly
quantum field theory in a de
Sitter background

• no global time-like Killing
vector

• Conformally flat coordinates:
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What are the de Sitter
invariant vacua?



• The α-vacuum

The vacua of de Sitter space

• One vacuum of de Sitter
space has special properties:

Consider a free scalar field:

• thermal,
• becomes the flat vacuum at

short distances, …
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defines a new vacuum:
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UV divergences of an interacting
theory in the α-vacuum



• Einhorn and Larsen found
pinched singularities at one-
loop order

hep-th/0209159
• Banks and Mannelli showed

the α-vacua need non-local
counterterms

hep-th/0209113

Variants of the α-vacua can be
renormalized:

• Place sources at x and xA
– Goldstein and Lowe
hep-th/0302050, hep-th/0308135

– Einhorn and Larsen
hep-th/0305056

The approach:
• First study the original αααα-

vacuum propagators
• Examine the variants later

• Evolve matrix elements
– do not ask S-matrix questions
– Suppose that the system is in an

αααα-vacuum at ηηηη0 and evolve
forward
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Trouble with the α-vacua?
Perturbation theory in 
the α-vacua:



The fate of the αααα-vacuum in an
interacting theory

• When we evolve the quantum theory with interactions,
– we discover a linear divergence in the one-loop corrections
– which cannot be cancelled by a mass counterterm

• We use a quantization formalism in which the pinch
singularities do not appear
– cf. pinch singularities in thermal field theory

• As a check we find that the theory is renormalizable
when
–  αααα →→→→ – ∞∞∞∞ (Euclidean vacuum) with interaction, or
–  αααα ≠≠≠≠ – ∞∞∞∞  but with no interactions



The Schwinger-Keldysh formalism
• As the background

is time-dependent,
it is dangerous to
ask about the
asymptotic states

• We use a quantization
procedure that allows a
time-dependent evolution

Schwinger, J. Math. Phys 2, 407 (1961)
Keldych, JETP 20, 1018 (1965)

• Effectively double the field
content of the theory:

For the Closed Time Contour
• Double the vertices:

– use ΦΦΦΦ+ and ΦΦΦΦ    – vertices
• Four propagators:

– G++, G+–, G–+, G– –

• Events on the + contour occur
before those on the – contour

ηηηη = 0

O(ηηηη)

ηηηη = – ∞∞∞∞

+ contour

– contour
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• Loop propagator
• Power counting
• Phase interference
• Possible divergences in

– two-propagator loops
– three-propagator loops

Divergences in the α-vacuum
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Evolution of the number operator

• Example:
– the number of Euclidean

particles in the α-vacuum
– in α-state at η0
–  Φ3 interaction

• Evaluate to one-loop order

  

€ 

L = − − − −1
2

1
2

2 2 1
2

2 2 1
6

3∂ ∂ ρ δ λµ
µΦ Φ Φ Φ Φ Φm m

induced by H0

  

€ 

N a a
k

E

k

E

k

E
r r r( ) ( ) ( )† †η η η=

    

€ 

α η η α η λ( ) ( ) ( ) ( )N
k

E
r = to O 2

    

€ 

α η η α η λ( ) ( ) ( ) ( )N
k

E
r = O 0 +

€ 

⊗

€ 

+   

€ 

+ L

remove log divergence
— in Euclidean limit
— in truncated αααα-vacuum



Origin of the divergence
• Define an ‘initial occupation number’

• The α-dependent coefficient of the divergence is thus
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these np
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Boltzmann suppression at large p

However, an αααα-state is populated
to arbitrarily high momenta

independent of k



Taming the α-vacuum
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What went wrong with the α-vacuum?

• Since the Euclidean vacuum
matches with the flat vacuum,
it is reasonable to define the
usual time-ordering

• But is it the correct prescription
for the α-vacuum?
– antipodinal information
– interference

• Can we generalize the idea of
time-ordering
– distinct from Euclidean case
– has a good α → – ∞ limit
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Propagation in the α-vacuum

• Define a new time-ordering
for the α-vacuum to remove
constructive interference in
products of propagators

• Up to constants, we obtain an
essentially unique form
– contains two point sources
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• Note that the time-ordering
operator acts on the fields

• To disentangle the inherent
correlated behavior at the
antipodes, Tα also depends
on the antipodes

Time ordering in the α-vacuum
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• It is useful to have

a path integral
definition for the
field theory



• Since the propagator contains
two sources, let us define the
generating functional to have
two currents:

• Fix aα and bα by differen-
tiating with respect to the
current

• Complete the square in W0
α

The path integral:  free theory
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• Express Wα in terms of W0
α

• Define a new functional
derivative

• An n-point Green’s function
contains three types of
propagators
– Alpha (both external)
– Mixed (one point external)
– Euclidean (internal)

The path integral:  local interactions

  

€ 

W J e
i d x g a J x b J x xAα α α[ ]

( ) ( ) ( )= ∫ − + +( )[ ]∫ D LΦ Φ4

€ 

−[ ] −[ ] = − ′′ =
i i W J iG x xx x J E

Fδ
δ

δ
δ

α
J J( ) ( ) [ ] ( , )0 0

  

€ 

L L LΦ Φ Φ( ) ( ) ( )x x xI[ ] = [ ] + [ ]0

    

€ 

G x x i i

N e W J

n
n J x J x

i d x g i
x

n

I

α
δ

δ
δ

δ

δ
δ α

( , , )

[ ]

( ) ( )

( )

1

0

1

4

K L= −[ ] −[ ]
×

∫ − −






L

J

the theory is renormalizable



• Only Euclidean-vacuum
propagators appear in the
loop

Local interactions:  renormalizability
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• Local interactions are
renormalizable because
only GE

F appears in loops
• Was this necessary?
• Recall the original α-

vacuum
– Euclidean
– Double-source α

• Antipodinal interactions

The path integral:  antipodinal interactions
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• Only α-vacuum propagators
appear in diagrams

Antipodinal interactions:  renormalizability
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• Although the propagator
contains a peculiar piece
which depends on the
antipode, the theory is
– causal
– renormalizable in the

self-energy
• It is non-local, but in a

very constrained form
– global coordinates
– inflationary patch

• Do pathologies appear
elsewhere?
– e.g. vertex corrections?

Further tests
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Conclusions
• The αααα-vacuum • The one loop corrections are linearly

divergent for the αααα-vacuum
• These cannot be removed by a mass

counterterm
• Euclidean vacuum loops can be

renormalized

• Loop effects receive a ΛΛΛΛ/H enhancement
– the next talk will describe this result

• Our definition for the αααα-propagator is
based on flat space intuition

• Use renormalizability to guide us
• Self-energy graphs are no longer linearly

divergent
– local and antipodinal interactions

• Loops and trans-
planckian physics

• An αααα-vacuum with
two sources


